
Key Players for AI : Unified Analytics and Big Data
Enterprises around the globe strive to enhance their business productivity and operational efficiency through technological advancements. Artificial intelligence (AI) is the widely adopted new age technology within the enterprises to achieve the same, but many lack the required approach in the same direction. Organizations simply integrate AI enabled tools in their business for predictive outcomes providing better insights into market requirements. At times, they forget that data is the fuel of technology and data of one field or process can be useful in another process. Therefore technology requires enormous data for quality outcomes. Big data and unified analytics are two such data concepts that would lead to the success of AI.
Big data is a technology that is used for convenient data storage and processing of enormous structured and unstructured datasets. Huge datasets are fragmented into smaller sets of information, stored distributively among the cluster, providing high processing speed. Outcomes from the big data analysis are quality information that can be fed to AI tools to operate on. This refined output, when put to analysis, provides better quality insights of the data that can be used for increasing business productivity and operational efficiency.
Apart from quality datasets, another approach for AI development is quantity datasets. According to which, the siloed units of information within the organizations must be broken or interconnected to each other to harness enormous data for analytics, better known as unified analytics. It is now possible to have single data repository with the help of big data that can be distilled to serve a specific purpose without affecting others. This new standard will permit AI to work with greater fidelity and accuracy with a lower cost of data management while allowing crucial acceleration in delivering AI outcomes.
Unified analytics enables organizations to build data pipelines across various siloed data storage for preparing labeled datasets for model building. This approach allows organizations to conduct AI analysis iteratively on the existing massive datasets. Further, AI algorithms can be applied for finely tuned data models allowing data scientist and data engineers to work together for technology’s development. Enterprises that would succeed unifying their domain data at scale with best AI technologies will be the ones to reach the top.
ON THE DECK
Featured Vendors
Next Level Business Services (NLB): Applying Digital Transformation to Create Supply & Service Value Chains of the Future
Gerber Technology: Reshaping the Dynamics of the Fashion & Apparel and Flexible Materials Industries
FileFacets: A One-stop Solution for Locating and Identifying Data Across the Enterprise" title="Jennifer Nelson, VP, Sales & Marketing" style="float:left; margin-right:10px; margin-bottom:20px;" width="60px" height="50px">
FileFacets: A One-stop Solution for Locating and Identifying Data Across the Enterprise
Infoworks: Dynamic Data Warehousing on Hadoop that Automatically Ingests and Organizes Enterprise Data for All Use-cases
ThetaRay: Advanced Data Analytics Provide an Enhanced Security Layer to Combat Bank Fraud and Cybercrime
VentureSoft Global: Robust Big Data Solutions for Customer, Product Profitability and Operational Efficiency
Absolut-e Data Com BizStats – Leveraging Artificial Intelligence To Extract The True Potential Of Data
Relational Solutions, Inc.: Delivers Enterprise Demand Signal Repositories to the Consumer Goods Ind
Emagine International: Adaptive Contextual Marketing Platform for Personalized Customer Interactions
Cygnus Professionals: Translate Big Data into Actions: An Analytics Platform Transforming Enterprise
EDITOR'S PICK
Essential Technology Elements Necessary To Enable...
By Leni Kaufman, VP & CIO, Newport News Shipbuilding
Comparative Data Among Physician Peers
By George Evans, CIO, Singing River Health System
Monitoring Technologies Without Human Intervention
By John Kamin, EVP and CIO, Old National Bancorp
Unlocking the Value of Connected Cars
By Elliot Garbus, VP-IoT Solutions Group & GM-Automotive...
Digital Innovation Giving Rise to New Capabilities
By Gregory Morrison, SVP & CIO, Cox Enterprises
Staying Connected to Organizational Priorities is Vital...
By Alberto Ruocco, CIO, American Electric Power
Comprehensible Distribution of Training and Information...
By Sam Lamonica, CIO & VP Information Systems, Rosendin...
The Current Focus is On Comprehensive Solutions
By Sergey Cherkasov, CIO, PhosAgro
Big Data Analytics and Its Impact on the Supply Chain
By Pascal Becotte, MD-Global Supply Chain Practice for the...
Technology's Impact on Field Services
By Stephen Caulfield, Executive Director, Global Field...
Carmax, the Automobile Business with IT at the Core
By Shamim Mohammad, SVP & CIO, CarMax
The CIO's role in rethinking the scope of EPM for...
By Ronald Seymore, Managing Director, Enterprise Performance...
Driving Insurance Agent Productivity with Mobile and Big...
By Brad Bodell, SVP and CIO, CNO Financial Group, Inc.
Transformative Impact On The IT Landscape
By Jim Whitehurst, CEO, Red Hat
Get Ready for an IT Renaissance: Brought to You by Big...
By Clark Golestani, EVP and CIO, Merck
Four Initiatives Driving ECM Innovation
By Scott Craig, Vice President of Product Marketing, Lexmark...
Technology to Leverage and Enable
By Dave Kipe, SVP, Global Operations, Scholastic Inc.
By Meerah Rajavel, CIO, Forcepoint
AI is the New UI-AI + UX + DesignOps
By Amit Bahree, Executive, Global Technology and Innovation,...
Evolving Role of the CIO - Enabling Business Execution...
By Greg Tacchetti, CIO, State Auto Insurance
Read Also
